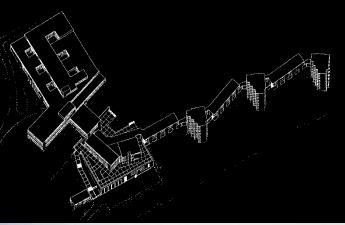
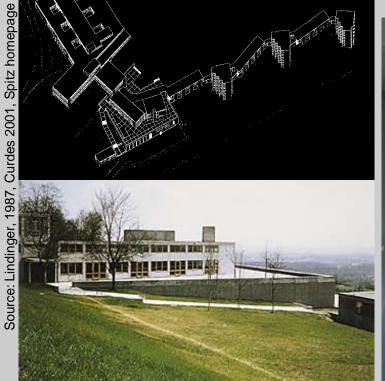
hfg ulm: The department of building Qualities, problems, context

Gerhard Curdes


Prof. em. for Urban Design an Country Planning - RWTH Aachen-University Lecture at the conference "la buena forma y el nuevo mundo: interferencias hfg ulm – latinoamerica" Buenos Aires, 12-2011


Outline

- The hfg Ulm
- Ground course
- Departments, students, diplomas
- Department of building
- Examples of study projects
- Example of a diploma thesis
- The department in retrospect
- Conclusion

HFG Ulm 1953-1968

Lecture hall

Classroom

4

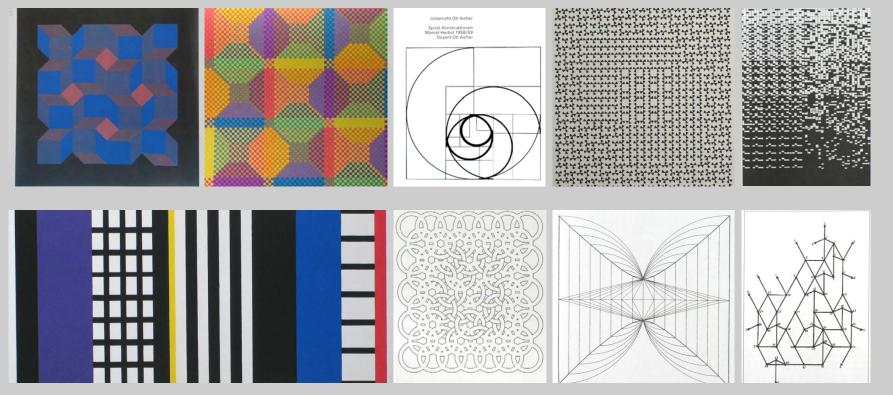
Specials of the hfg

- Founded in memory of Hans + Sophie Scholl, killed 1944 by the Nazis
- Basic goal: democratic-political education
- Cosmo-political atmosphere
- Built for 150 students
- The only school where Jewish students felt safe
- Living together like in a cloister
- 43% foreign students
- In confrontation to the right-wing politics in Germany of the 1959ies
- Mixed public-private financing
- Existing only 15 years 1953-1968

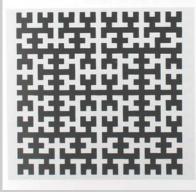
Program

- 1 year ground course / 1 año curso básico
- 2 years department study / 2 años en el departamento
 - Five departments / Cinco departamentos
 - Produktgestaltung / Design / Diseño
 - Bauen / Building / EDIFICAR
 - Visuelle Kommunikation / Visual communication / comunicación visual
 - Information / Information / Información
 - Foto, Film / Photography Film / Foto, Película
- 1 year: Diploma thesis / Tesis
 - Theoretical thesis / Tesis teórica
 - Practical thesis / Tesis práctica
- Permanent teacher: the purist building

Ground course Methodological importance


- The ground course was like an "initiation rite" into the hfg philosophy
- Structural thinking was founded there
- Basic methods have been trained
- Philosophy: minimalism and purism
- Therefore I explain first some of the fundamentals of the ground course

Teaching: Groundcourse 1969

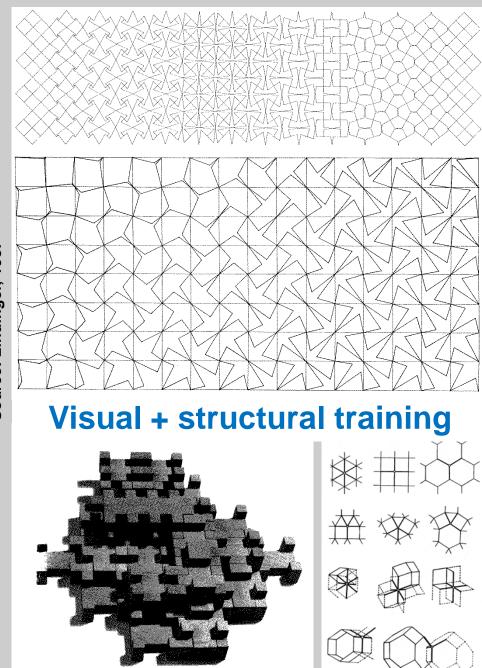

Source: Grundlehre 1959/60 Testatheft Curdes

Visual methodology: presentation medium, drawing, writing, language **Constructive methods of presentation** Methodological exercises: geometrical representation, freehand drawing Crafts work: wood, metal, plastic, plaster, photo **Cultural integration** -Introduction to Physiology, -Cultural History of the 20th c. -Linguistics Sociology of the industrial Society **Psychology, Behavioral Theory Perception Theory Technical Physics Physics of colors** Methodology Methodological exercises **Graphical representation**

Visuelle Methodik: Darstellungsmittel,Schrift, Zeichnen, Sprache Konstruktive Darstellungsmethoden Methodische Übungen: geometrische Darstellung, Freihandzeichnen Werkarbeit: Holz, Metall, Kunststoff, Gips, Foto **Kulturelle Integration** -Einführung in die Physiologie -Kulturgeschichte des 20. Jhdts. -Sprache Soziologie der industriellen Gesellschaft Psychologie, Verhaltenstheorie Wahrnehmungstheorie **Technische Physik** Farbenphysik Methodologie Methodische Übungen Graphische Darstellung

Unten / Below: Grundkursarbeit bei Maldonado / Work from Maldonado's foundation course. Student Klaus Frank

Formschlüssiges Netz aus katametrischen Elementen, Grundkurs Maldonado, / Form-fitting net of catametric elements, Maldonado's foundation course. Student Klaus Schmitt (1961–1962)

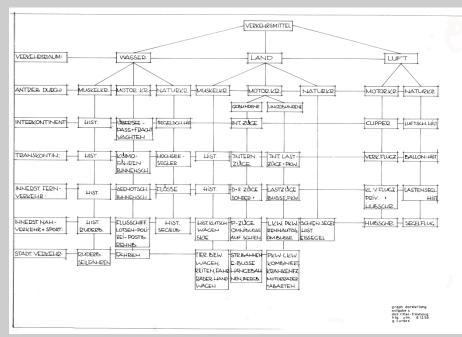


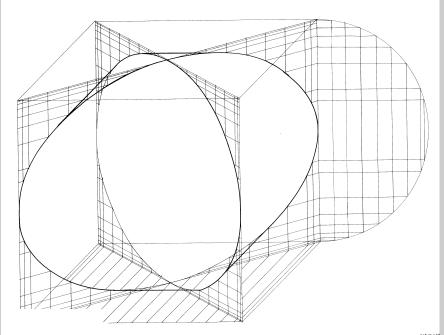
102

Visual + geometrical training

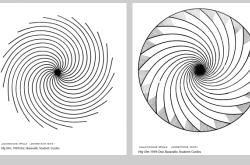
Source: Lindinger (8), 1987 Curdes (3)2001

Gitter aus kathametrischen Elementen / Jan Thylen 1961/62, Doz. Maödonado / Quelle: Lindinger 1987. S.59


Netz-Transformation. Kurt Christen, 1965-66 Ass. Günter Schmitz. Source: Lindinger 1978, P. 59 Schein-Räumlichkeit irlusionistischer Mittel (Perspektive, Schatten, Hell-Dunkel) Ernst Buchwalder 1965 Dozent William S. Huff Source: Lindinger, 1987, S. 56


10

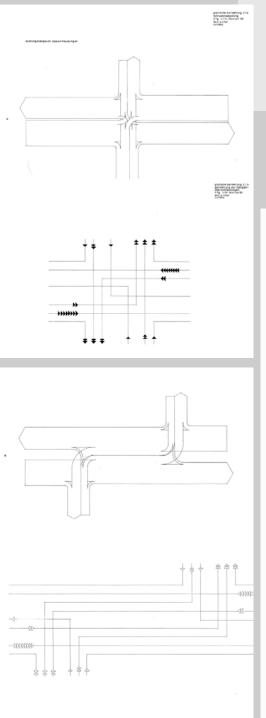
hfg ulm: Department of Building - Gerhard Curdes - Buenos Aires 12-011


Training in classification, systematology, geometry

Space of traffic:	Water	Land	Air
Mode of drive:	Muscle force	Muscle force	Muscle force
	Engine	Engine	Engine
	Natural force	Natural force	Natural force
		bound	
		unbound	
Intercontinental:			
Transcontinantal:			
National long distances:			
National short distances:			
Urban transport:			

Negativ tube-node 1960.Teacher:Zeischegg.Student:Curdes

Archimedean Spiral Logarithmic spiral 1960 Teacher: Baravalle Student: Curdes

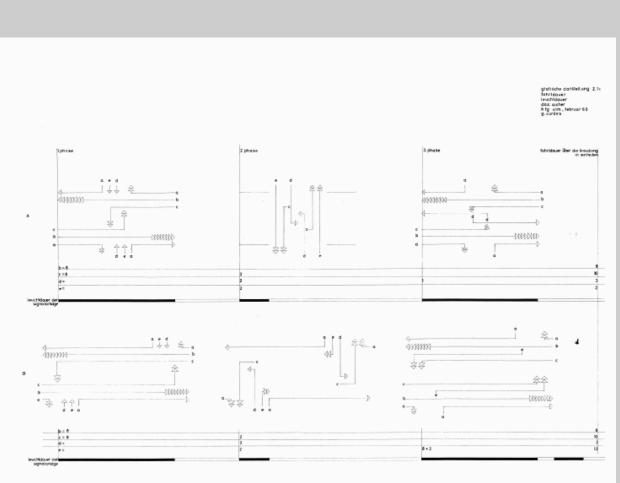

Systematology of all modes of transport 1959 Teacher: Rittel/Fröshaug.Student: Curdes

Theoretical / systematic exercises 1959/60 Examples

- Design of an arithmetically graded gray scale according to a random and a systematic method
- Design of a voting machine
- Design of a set of weights with as few elements as possible of the same form character
- Graphical comparison of two intersections

- Entwurf einer arithmetisch gestuften Grauskala nach einer zufälligen und einer systematischen Methode
- Entwurf einer Abstimmungsmaschine
- Entwurf eines Gewichtssatzes mit möglichst wenig Elementen gleichen Formcharakters
- Graphischer Leistungsvergleich zweier Kreuzungsformen

Source: Training exercises G.Curdes



Graphical comparison of two intersections

hfg Ulm Groundcourse1959/60

Teacher: Aicher. Student: Curdes

An example for training in graphical systematology

Teaching themes of Horst Rittel (Mathematician)

Ground-course 1959/60 - Selection

Methodology

Combinatorics Logistics Quantities Topology Groups and Symmetry Curves, surfaces, gradients Empirical and reductive techniques Documentation technology

Cybernetics

Operations research

Generation of forms Differential Geometry Minimal surfaces Processes: Time, variable, growth Continuous / discontinuous processes Time series theory - Orders - Process of arranging

- Order conditions Organization

Systems

- Choice of Systems
- Constrictions of Systems
- Deterministic Systems
- Extreme conditions
- Subsystems
- Large-and small systems
- System: driver environment – machine
- Graphical representation of the system

Source: Lecture Transcript G. Curdes 1959/60

Operations Research

- Corporate objectives
- Decision problems for companies
- Target structures of the participants
- Forms of decision problems
- Simulation
- Decision-making

Philosophy of Science

- 1. Data recovery
- 2. Data collection
- 3. Data processing
- 4. Data Storage
- -Regulation, navigation, control
- -Quality of Regulations

Source: Lecture Transcript G. Curdes

Human Engineering

- A. System Design
- 1. System purpose
- 2. Operating conditions
- 3. CV of the system
- 4. Design constraints
- 5. Tolerated extreme situations
- B. External environment of the system
- C. Internal environment of the system
- **D.** Requirements
- E. Specification of the systems outputs
- F. Components of the decision problem
- **G.** Control variables

Communication Processes

- Situations
- Situations as graphs
- Description of work processes
- Deformation of information
- Trend to simplify
- Noise in the language

Feasibility of form:

- Regulations
- Structures
- Symbolic value of forms

Logic

Branches of the logic Syllogistic Junctures, calculus of junctures Logic of quantifiers Modal logic Symbolic logic - Methods of proof

- Boolean algebra

Two important Methods at Ulm:

1.) G. Polya: How to Solve it. 1957

An important theory of heuristic thinking in Ulm

Source: Polya 1957: Schule des Denkens (School of Thinking)

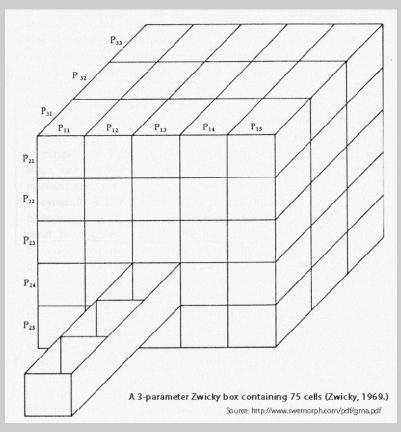
How to solve it?

Four principles

- 1. First, you have to understand the problem
- 2. After understanding, then make a plan
- 3. Carry out the plan
- 4. Look back on your work. How could it be better?

	ERSTENS	 VERSTEHEN DER AUFGABE was ist unbekannt? was ist gegeben? Wie lautet die Bedingung?
<u>.</u>	Du mußt die Aufgabe verstehen	 Ist es möglich, die Bedingung zu befriedigen? Ist die Bedingung ausreichend, um die Unbekannte zu bestimmen? Oder ist sie unzureichend? Oder überbestimmt? Oder konstraktikorisch?
ÖSUNG?		 Zeichne eine Figur! Führe eine passende Bezeichnung ein! Trenne die verschiedernen Teile der Bedingung! Kannst Du sie hinschreiben? AUSDENKEN EINES PLANES
15 1	ZWEITENS	 Hast Du die Aufgabe schon früher gesehen? Oder hast Du dieselbe Aufgabe in einer wenig verschiedenen Form gesehen?
100	Suche den Zusammenhang	Konnst Du eine verwandte Aufgabe? Kennst Du einen Lehrsatz, der förderlich sein könnte?
1.23 👔 🛛		Betrachte die Unbekanntel Und versuche, Dich auf eine Dir bekannte
1.0 %	zwischen den Daten und der	Aufgabe zu besinnen, die dieselbe oder eine ähnliche Unbekannte hat.
	Unbekannten	ist. Kannst Du sie gebrauchen? Kannst Du ihr Resultat verwenden? Wurdest Du ingendein Hilfselement einführen, damit Du sie verwenden kannst?
DIE ^{berkens,}	Du mußt vielleicht Hilfsaufgaben	Kannst Du die Aufgabe anders ausdrücken? Kannst Du sie auf
DIE Denkens,	betrachten, wenn ein unmittelbarer	noch verschiedene Weise ausdrücken? Geh auf die Definition zurück! • Wenn Du die vorliegende Aufgabe nicht lösen kannst, so versuche.
	Zusammenhang nicht gefunden	zuerst eine verwandte Aufgabe zu lösen. Kannst Du Dir eine zugänglichere verwandte Aufgabe denken? Eine aligemeinere Aufgabe?
MAN	werden kann	Eine speziellere Aufgabe? Eine analoge Aufgabe? Kannst Du
122	Worderr Ram	einen Teil der Aufgabe lösen? Behalte nur einen Teil der Bedingung bei und lasse den anderen fort; wie weit ist die Unbekannte
2 %	Duran Of each is Olish sizes Of a day	dann bestimmt, wie kann ich sie verändern? Kannst Du etwas Förderliches aus den Daten ableiten? Kannst Du Dir andere Daten denken, die geeignet
الخاصا	Du mußt schließlich einen Plan der	sind, die Unbekannte zu bestimmen? Kannst Du die Unbekannte andern oder
- 2	Lösung erhalten	die Daten oder, wenn nötig, beide, so daß die neue Unbekannte und die neuen Daten einander näher sind?
SUCHT N Quelle: Polya: 5		 Hast Du alle Daten benutzt? Hast Du die ganze Bedingung benutzt?
01		Hast Du alle wesentlichen Begriffe in Rechnung gezogen, die in der Aufgabe enthalten sind?
∣⊃°∣		3. AUSFÜHREN DES PLANES • Wenn Du Deinen Plan der Lösung durchführst, so kontrolliere
S		jeden Schritt. Kannst Du deutlich sehen, daß der Schritt richtig
	DRITTENS	ist? Kannst Du beweisen, daß er richtig ist? 4. RüCKSCHAU
MIE	Führe Deinen Plan aus	Kannst Du das Resultat kontrollieren? Kannst Du den Beweis
2		kontrollieren? • Kannst Du das Resultat auf verschiedene Weise ableiten? Kannst
	VIERTENS	Du es auf den ersten Blick sehen? • Kannst Du das Resultat oder die Methode für irgenckine andere
	Prüfe die erhaltene Lösung	Aufgabe gebrauchen?
	Prute die emaiterie Losund	

¿Qué es esto?


Cuatro principios

- 1.Entender el problema
- 2.Crear un plan
- 3.llevar a cabo el plan.
- 4. Revisar e interpetar el resultado. Como no podía ser mejor?

2. MORPHOLOGICAL METHOD Creativity-Technique : Zwicky Box

Fritz Zwicky: Morphologische Forschung: Wesen und Wandel materieller und geistiger struktureller Zusammenhänge 1959

- Generalization of a given problem
- Identification and localization of the parameters of the problem
- Morphological scheme of all possible solutions
- Evaluation of the solutions
- Selection of the optimal solution (Zwicky 1971, p. 90).

Initial Energy	Transmission	Final (Storage)
Form	Form	Form
(K)	(K)	(K)
Kinetic	Kinetic	Kinetic
(E)	(E)	(E)
Electrical	Electrical	Electrical
(C)	(C)	(C)
Chemical	Chemical	Chemical
(T)	(T)	(T)
Thermal	Thermal	Thermal
(N)	(N)	(N)
Nuclear	Nuclear	Nuclear

Energy Conversion Matrix (one configuration of 125 shown)

Source: http://www.swemorph.com/pdf/gma

Design philosophy of Horst Rittel

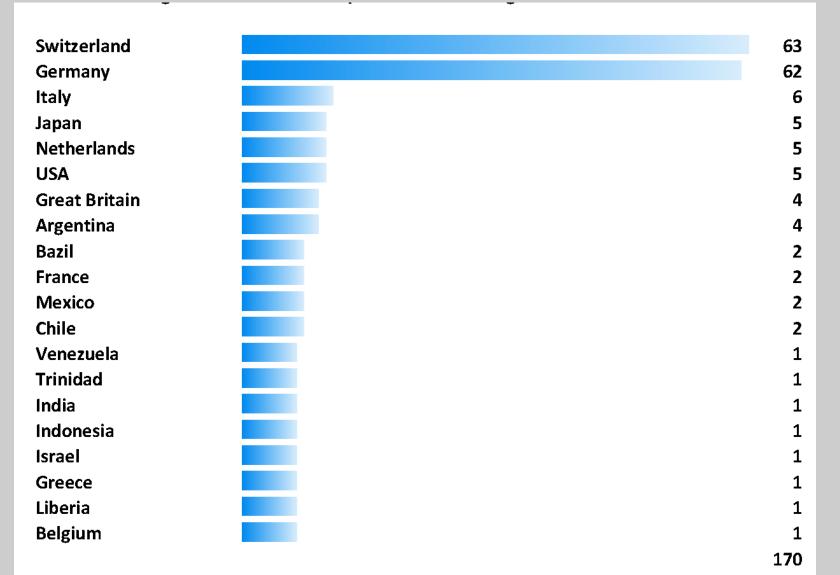
"Design is a process to generate variety".

- 1. "Produce variety and
- 2. then delete variety
- 3. and produce reality".
- "To solve a problem ",there must be at least one idea as a candidate for the solution".
- If you have more candidates for the solution look for reasons to exclude all beside one to reduce the variety".

Outcome of the Ground course

- Endurance
- Skills for 2+3 dimensional thinking
- Ability for precise working
- Trained in systematic thinking
- Trained in basic methods of creative thinking
- Trained in systematic structuring of complex tasks
- Basics in selected science fields
- Trained in search for non conventional solutions
- Failure: underestimation of the role of intuition

HFG Ulm: Departments / Students / Diplomas 1953-1968


Abteilung /Department	Anzahl der Studenten	davon Diplom / Diplomas	in %
Information / Information	25	7	28
Film / Film	27	6	22
Visuelle Kommunik. / Vis. Commuication	158	44	28
Bauen / Building, Industrial Building	170	73	43
Produktgestaltung / Product design	249	101	40,5
hfg Gesamt /Total	637*	231	36

Source: Curdes, Die Abteilung Bauen an der hfg Ulm. 2001

The Department of building / industrial building

- 1953-1956 exercises like in a normal architectural school
- Since 1958: Industrial building. In that time this was an unique approach worldwide
- Dominance of constructive thinking
- The methods used in this department often followed the methods trained in the ground course:
- Systematical analysis, intensive studies of the context, systematical generation of solutions

Students of the department of building Countries of origin

Source: Curdes, 2001, S. 24

Heads of Department + Teachers

Year	Name / Designation	Head of	Teacher
		Department	
1953-54	Architecture	Max Bill	-
1954-55	Architectur/Townbuilding	Max Bill	Konrad Wachsmann
1955-56	Architecture/Townbuilding	Max Bill	Konrad Wachsmann
1956-57	Architecture/Townbuilding	Max Bill	Konrad Wachsmann
1957-58	Building	?	Fritz Pfeil
1958-59	Building	Herbert Ohl	Herbert Ohl
1959-60	Building	?	?
1960/61	Industrial Building	Herbert Ohl	Herbert Ohl
1961/62	Industrial Building	Herbert Ohl	Herbert Ohl
1962/63	Industrial Building	Herbert Ohl	Herbert Ohl
1963/64	Industrial Building	Herbert Ohl	Herbert Ohl
1964/65	Industrial Building	Herbert Ohl	Herbert Ohl
1965/66	Industrial Building	Herbert Ohl	Abraham Moles, Wladyslaw Czajka,
			Günter Schmitz, Klaus Limberg
1966/67	Industrial Building	Herbert Ohl	Abraham Moles, Herbert Ohl,
			Claude Schnaidt, Werner Wirsing
1968	Industrial Building	Claude Schnaidt	Abraham Moles, Herbert Ohl,
			Claude Schnaidt, Werner Wirsing

Many guest teachers!

de Acosta Asano. Asherik Auer Autenrieth Bill Ciribini Czajka Dietz Doernach Dressel Erdmenger Fratelli Fuller Ginelli Gotterbarm Haan Henne Johnsch

Jokusch Joss Kandel Knoll Kopp Krietsch Künzel Küsgen Lakatos Leonhard Lusser Makowski Martin Matthes Meurer Minke Mitchell (Ayla)

Niewerth Niederastroth Norberg-Schulz Ohl Otto (Frei) Palme Patterson Pavel Pelan Pfaff Pfeil Pizetti Price Rapp Rauch Rohrberg Schmidt Hermann Neusel-Helvacioghu Schmidt Jürgen Schmidt Walter

Schmitz Günter (Schnaidt) Schütte Speidel Spieker Stolper Stritzinger Sulzer ThornleyTonne Wachsmann Wallis Wasowski Weller Wirsing Wormbs Wurm (Heinrich)

Source: Curdes 2001

25

Examples of projects 1957-1971

Examples of study projects 1957-1968

Research and development for an universal construction system with sandwich panels – Doz. Ohl (1957/58),

Development of non-limited and limited sandwich elements, Doz. Ohl (1958/59),

Integral construction, Doz. Ohl (1959/60)

Construction of curtain wall panels, connections and modular coordination, Doz.Ohl (1961/62).

Analysis of connections systems in prefabricated reinforced concrete building systems in West Europe, East Germany, Poland and the USSR, (1990/60) Doz.?

Examples of diploma-thesis

Pavilion, Ulm 1957

Airport 1962

Building Construction 1962

Family Flat 1963

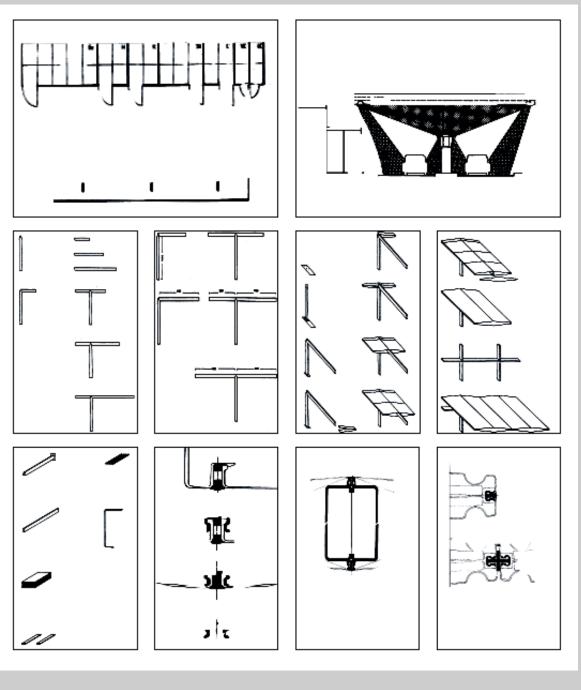
Shopping Center 1963

Office Building 1964

Urban Planning 1964

Public Transport 1966

Car Parking 1968

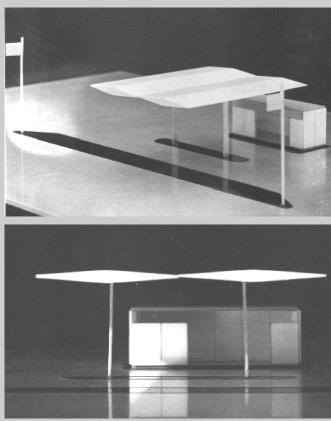

Building System with Synthetic Material 1968

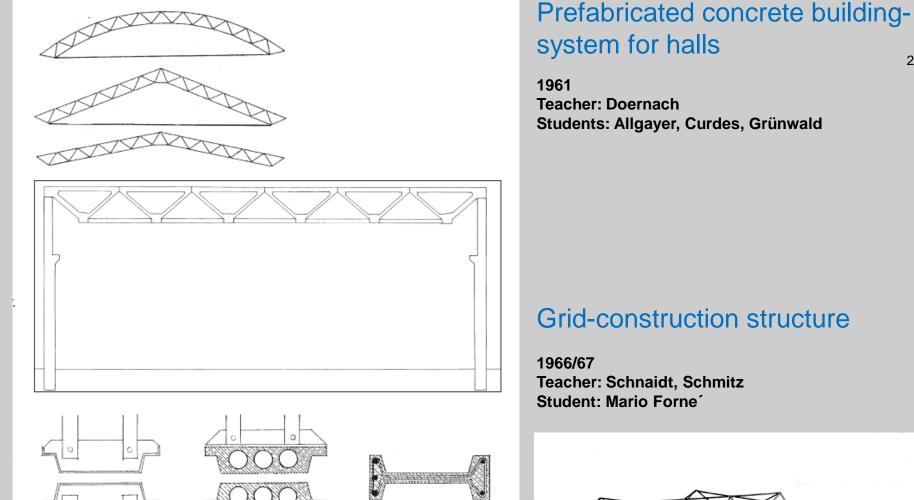
Buildings for Development Countries 1969

Architectural Theory 1971

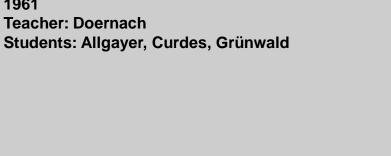
Planning Theory 1971

Urban Planning 1971

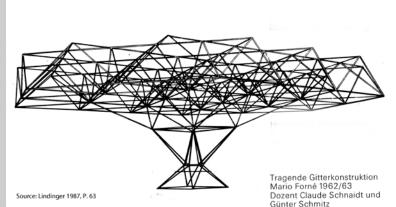



Prefabricated petrol station 2d.price - International Avia competition 1960

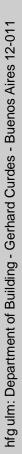
Idea: Translucent shining roof

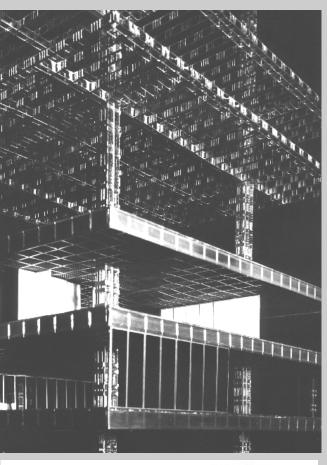

Students: Allgayer, Curdes, Dahlmann, Grünwald, Muchenberger

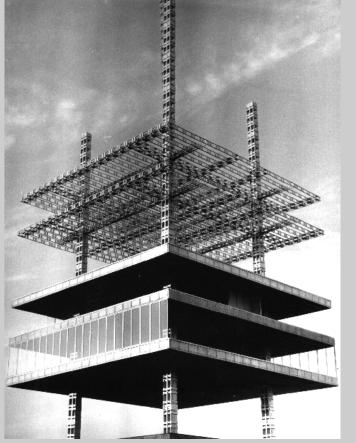
Participation in the competition during the first year at the department of building



Ō

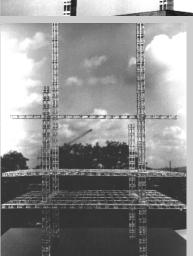

Grid-construction structure

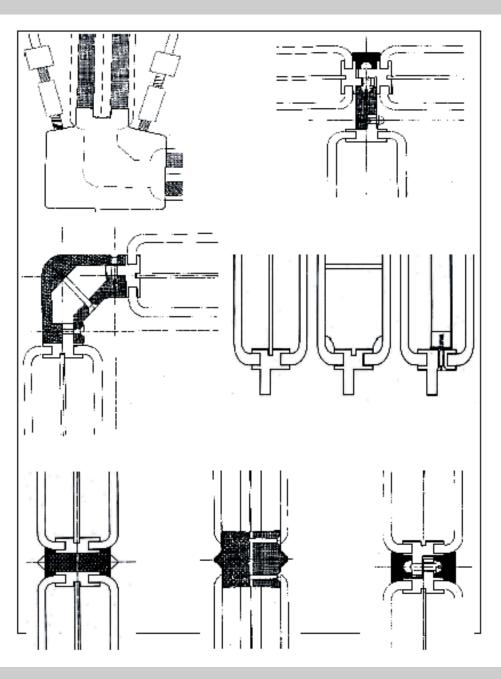

Teacher: Schnaidt, Schmitz Student: Mario Forne



hfg ulm: Department of Building - Gerhard Curdes - Buenos Aires 12-011

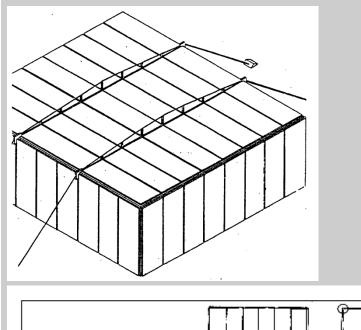
27

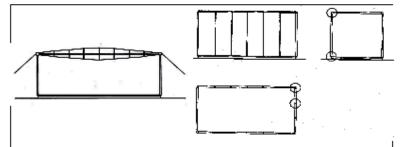


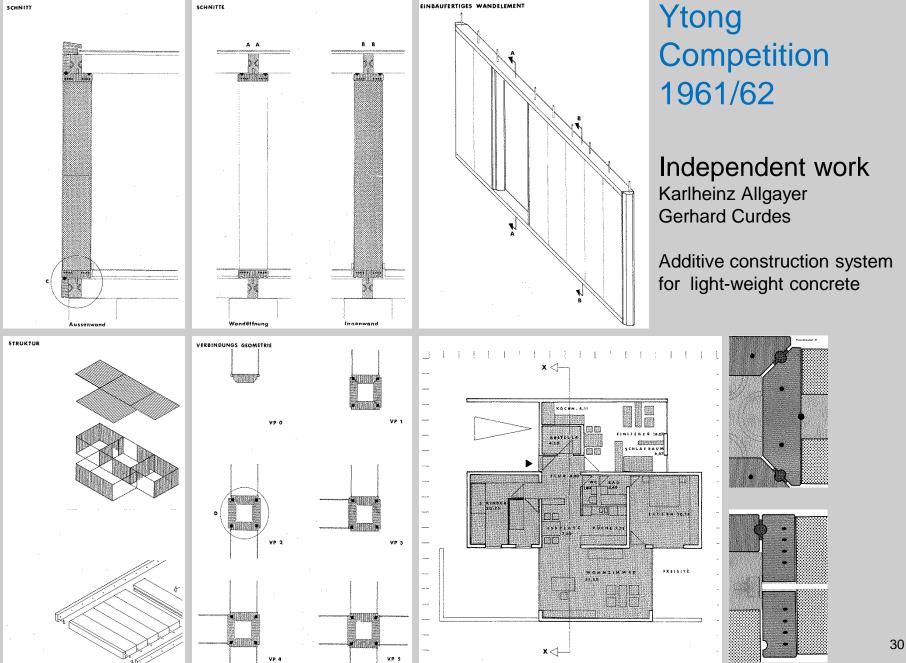

Aluminum building system of prefabricated elements

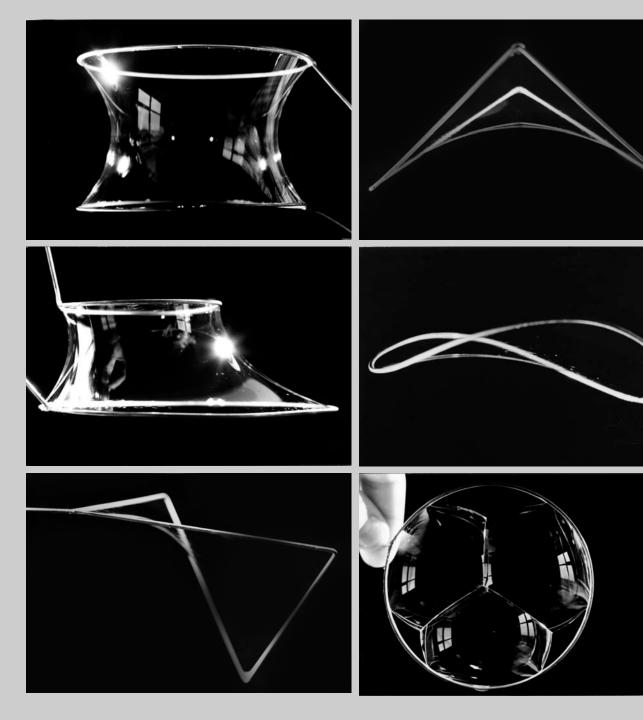
International Summer Academy Salzburg, 1961

Teacher: Prof. Konrad Wachsmann Students: Karlheinz Allgayer (D), Hans Bleiker, (CH), Gerhard Curdes (D), Bernhard Leitner (AUT), Alfred Kohlbacher (AUT) and students from Univ. Karlsruhe

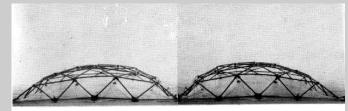


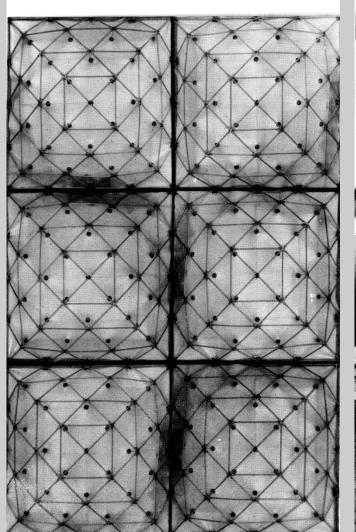


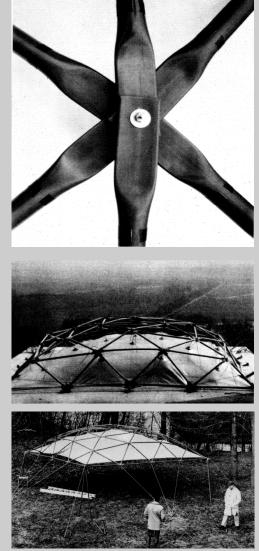



Glass-panel-building system

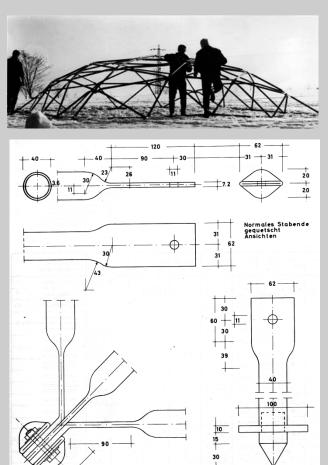
1962 Teacher: Voss Students: Allgayer, Curdes, Grünwald




Minimal surfaces / Hyperbolic Paraboloids 1962-63?

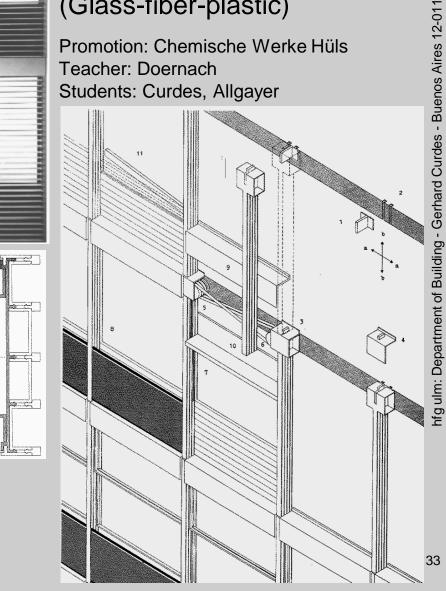

Studies for membranes as building surfaces

Teacher: Doernach Students: Curdes et.al.



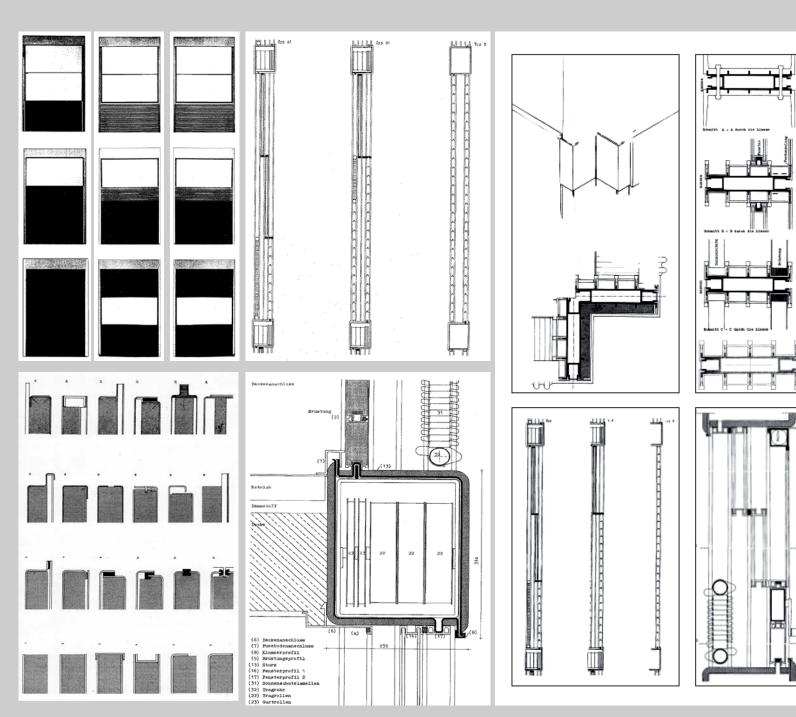
Dom construction with plastic-pipes 1962/63 Teacher: Doernach

Teacher: Doernach Students: Dobrinski, Schu, Thanner, Petersen Source: Output 17/18 1963

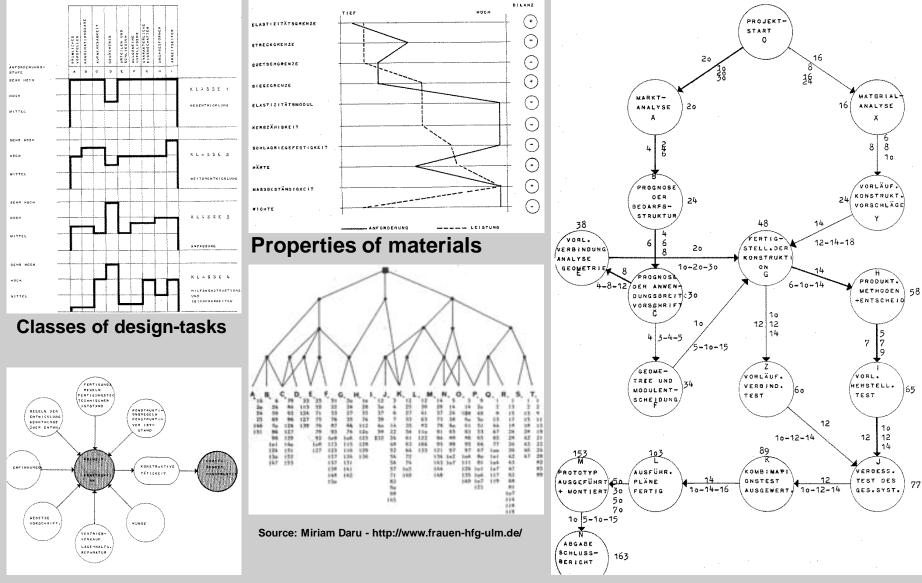

Eckpunkt mit Stützenanschluß Draufsicht

Stützstab Ansicht

hfg ulm: Department of Building - Gerhard Curdes - Buenos Aires 12-011


Diploma-Thesis 1963: Curtain-wall-system for office buildings (Glass-fiber-plastic)

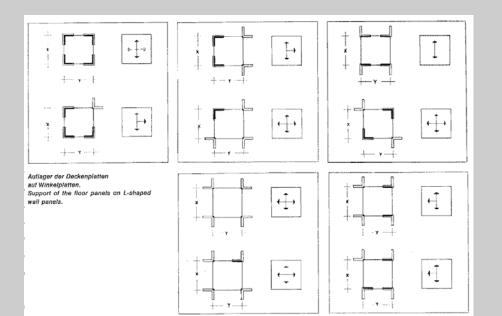
Promotion: Chemische Werke Hüls Teacher: Doernach Students: Curdes, Allgayer



Diploma-thesis p.2

Examples of methods

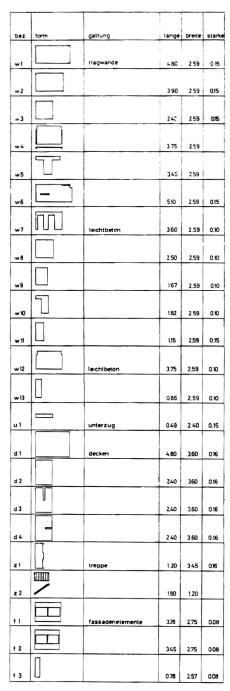
Source: Curdes 1963

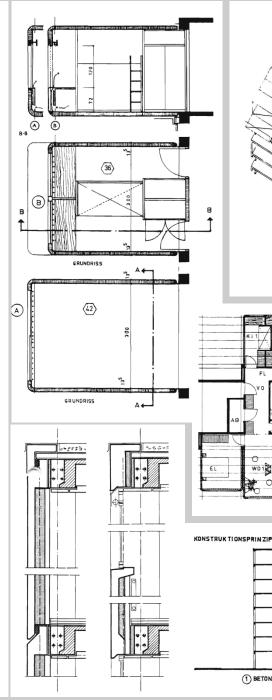


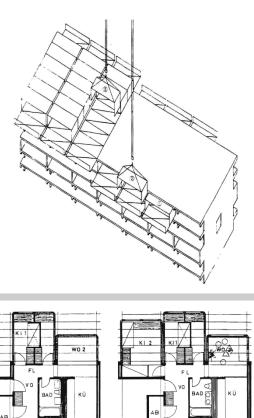
Design influences

Structure as graph


Project-planing, critical path-method


35




Diploma-thesis: Angle housing construction 1965

Teacher: Ohl Student: Muchenberger

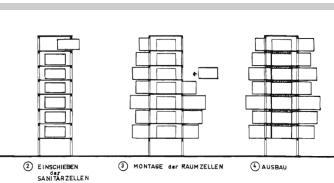
0

W01

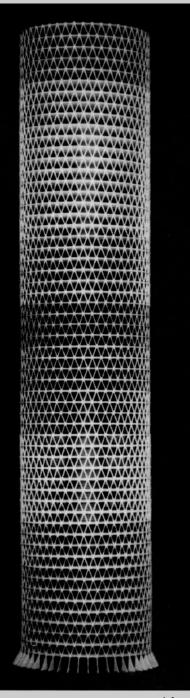
C

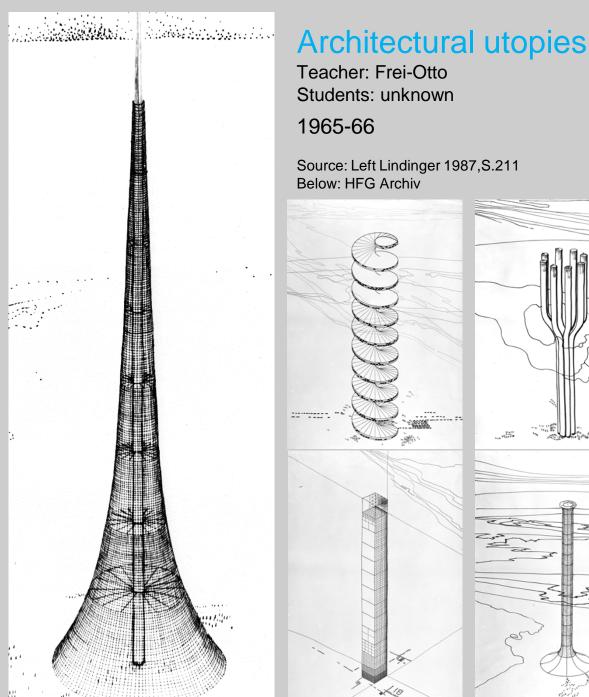
1 BETONIEREN

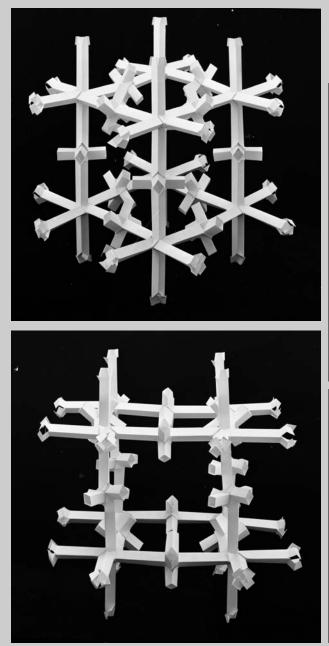
ES

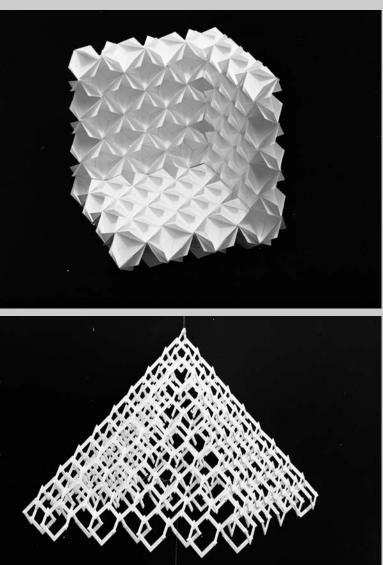

Apartments with 2 living-rooms 1967

Teacher: Schnaidt Students: Hess, Asano, Marcacci


Source: Ulm 19/20, 1967


EL

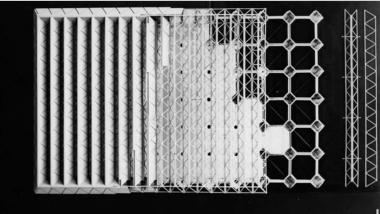

KI 3.



hfg ulm: Department of Building - Gerhard Curdes - Buenos Aires 12-011

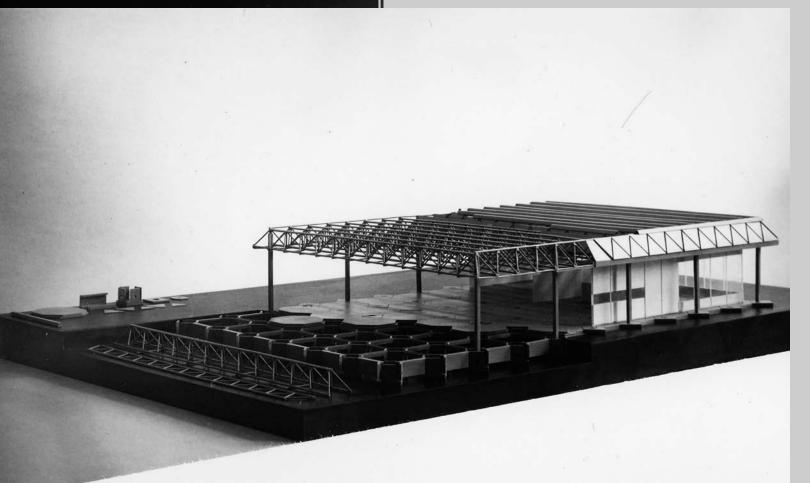
11.55

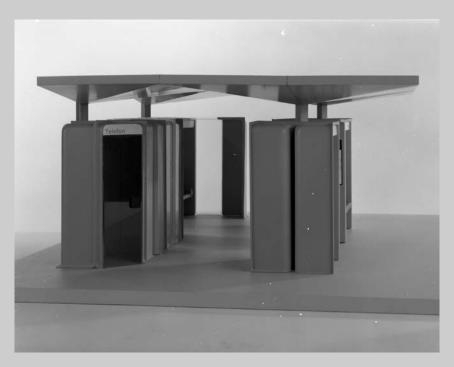
Room corners with similar elements First Study year 1966/67



Teacher: Schmitz Students: Bachmann, Burri, Goedhart, Ryffe

Source: HFG Archiv


hfg ulm: Department of Building - Gerhard Curdes - Buenos Aires 12-011



Adaptable Industrial Building

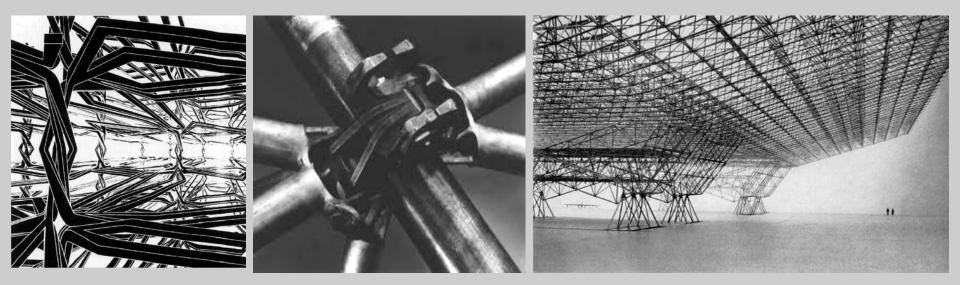
2. Year 1967/68 Teacher: Wirsing Student: Goedhart

Source: HFG Archiv

Teacher: Lindinger/Schnaidt Students: Gröbli, Ludi, Schärer, Weiss

1. Price Rat für Formgebung

Source: HFG Archiv



Categories of diploma-themes

- Office buildings
- Building systems
- Infrastructural buildings
 - Schools, air terminals, stations, hospitals
- Urban planning
 - Touristic planning, village-centers, shopping centers, recreation-facilities etc.
- Housing
- Theory

The missing of Konrad Wachsmann

With him, the story of the department would have been a different one

Wachsmann was a fascinating teacher and he had a vision about the construction of buildings in the industrial age. The pictures of his basic work *Wendepunkt im Bauen 1959 (turning point in building)* – see above – has fascinated generations of students and architects. He thought in greater dimensions and more fundamental. Wikipedia wrights: "*With as few parts he wanted to achieve a wide variety of design possibilities. His life's work could be described as the search for the "universal node".*"

He taught in UIm from 1954 to1957 and has left the school in protest against the founding of the "Institute of Industrialized Building".

Careers of students

- University professors (many)
- Researchers
- Town planners (in communities and in private offices)
- Architects (many)
- Parliamentarian (one)
- Secretary of a professional association (two)
- Craftsman (back to the roots few)
- Artist (few)

The department of building in retrospect

- It was a large department with in total 170 students
- 22% of all students chose this department
- 43 % of all students at the department got the diploma. It was the highest rate of all departments (Curdes, 2001 P. 10-11)
- The program was limited to a small aspect of themes: Construction design
- Goals and programs changed partly with the teachers
- It was a restless department
- We worked like designers in a construction company.
- My personal critic: the missing of a theory. The tasks were pragmatic, too similar and with too little spirit
- Building has to do with space creation. But space was not an issue in Ulm
- That was the reason why many of us turned to theory and urban planning during the study and later

Critics

Industrialized Building was a direction that was synchrone with the technological development and therefore a legitime topic.

But: How could the school find students who had been trained before in conventional construction? With only low-skilled students this field could not be cultivated, unless you also admitted dilettantism – which partially happened

Probably all these special aspects would have been attractive as an advanced studies-program.

A post-graduate program could have been open only to qualified architects - without the basic training in the ground-course.

Many students of the Building Department later had difficulties with the HfG diploma. It was accepted only like an art school diploma and was not sufficient for the approval by the Chambers of Architects.

For these and other reasons the program oscillated between an (almost normal but insufficient) architectural education and a specialization.

Summary

I will conclude with the evaluation of my late study-friend Prof. Klaus Pfromm

- "To me, the building department has been characterized by the paradoxical situation that from the narrowest, moreover even impractical field like industrial building, the broadest range of skills to solve design and planning tasks emerged.
- Today we know that some methodological goals have been too high and some methods were still insufficient. At that time, this qualification was a sensation....
- While in the Building Department structural solutions for industrial buildings have been searched, the students learned in the system of all the offerings to acquire a comprehensive and very powerful qualification for planning". Source: Klaus Pfromm in: Curdes – Die Abteilung Bauen an der hfg Ulm, 2001, P. 41

And I would add: Because the creative path was blocked, the systematology got such an importance. We learned a "metalanguage" of the systematic structuring of problems which we could use in many professional fields.

club off ulm – HFG Archive ~ 100 members. Deposit of study work in the HFG Archive

Opening of the HFG-Archive on 19.11.2011 in the HFG-Building

6.500 Graphics350 Models30.000 Documents11.000 Photos6000 Books in the Library

Visitors are welcome

Thank you for your attention